Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics
نویسنده
چکیده
We develop a simple and e cient algorithm to compute Riemann-Roch spaces of divisors in general algebraic function elds which does not use the Brill-Noether method of adjoints nor any series expansions. The basic idea also leads to an elementary proof of the Riemann-Roch theorem. We describe the connection to the geometry of numbers of algebraic function elds and develop a notion and algorithm for divisor reduction. An important application is to compute in the divisor class group of an algebraic function eld.
منابع مشابه
Computing Riemann-roch Spaces in Algebraic Function Elds and Related Topics
We develop a simple and eecient algorithm to compute Riemann-Roch spaces of divisors in general algebraic function elds which does not use the Brill-Noether method of adjoints nor any series expansions. The basic idea also leads to an elementary proof of the Riemann-Roch theorem. We describe the connection to the geometry of numbers of algebraic function elds and develop a notion and algorithm ...
متن کاملBases for Riemann-Roch spaces of one point divisors on an optimal tower of function fields
For applications in algebraic geometric codes, an explicit description of bases of Riemann-Roch spaces of divisors on function fields over finite fields is needed. We give an algorithm to compute such bases for one point divisors, and Weierstrass semigroups over an optimal tower of function fields. We also explicitly compute Weierstrass semigroups till level eight. MSC2010 Subject Classificatio...
متن کاملRiemann-roch Spaces of the Hermitian Function Field with Applications to Algebraic Geometry Codes and Low-discrepancy Sequences
This paper is concerned with two applications of bases of Riemann-Roch spaces. In the first application, we define the floor of a divisor and obtain improved bounds on the parameters of algebraic geometry codes. These bounds apply to a larger class of codes than that of Homma and Kim (Goppa codes with Weierstrass pairs, J. Pure Appl. Algebra 162 (2001), 273-290). Then we determine explicit base...
متن کاملExplicit bases for Riemann-Roch spaces of the extended norm-trace function field, with applications AG codes and Weierstrass semigroups
The extended norm-trace function field is a generalization of the Hermitian and norm-trace function fields which are of importance in coding theory. In this paper, we provide explicit bases for certain Riemann-Roch spaces on the extended norm-trace function field. These bases provide explicit generator and parity check matrices for algebraic geometry codes CL ( D, aP∞ + ∑ β∈B aβP0β ) on the ext...
متن کاملSupplementary Lecture Notes on Elliptic Curves
1. What is an elliptic curve? 2 2. Mordell-Weil Groups 5 2.1. The Group Law on a Smooth, Plane Cubic Curve 5 2.2. Reminders on Commutative Groups 8 2.3. Some Elementary Results on Mordell-Weil Groups 9 2.4. The Mordell-Weil Theorem 11 2.5. K-Analytic Lie Groups 13 3. Background on Algebraic Varieties 15 3.1. Affine Varieties 15 3.2. Projective Varieties 18 3.3. Homogeneous Nullstellensätze 20 3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 33 شماره
صفحات -
تاریخ انتشار 2002